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Abstract
Starting from a Lagrangian mean-field theory, a set of time-dependent tight-
binding equations is derived to describe dynamically and self-consistently an
interacting system of quantum electrons and classical nuclei. These equations
conserve norm, total energy and total momentum. A comparison with other
tight-binding models is made. A previous tight-binding result for forces on
atoms in the presence of electrical current flow is generalized to the time-
dependent domain and is taken beyond the limit of local charge neutrality.

1. Introduction

The purpose of the derivations below is to obtain a set of time-dependent (TD) tight-binding
(TB) equations, describing dynamically and self-consistently an interacting system of quantum
electrons and moving classical nuclei. A general TD form of TB may have a range of appl-
ications. Processes where a dynamical coupling between electrons and nuclei is of interest
include excitations in clusters [1] and the mechanical response of a small conductor to current-
induced forces and local heating under electrical current flow [2, 3]. A third example is the
propagation of an electron–hole pair in a long molecule and the structural response of the
molecule. A further purpose of the present work is to recover a TB expression for interatomic
forces in the presence of electrical current flow, obtained previously from a steady-state
statistical point of view [2].

The derivation of the TD TB equations starts from a Lagrangian one-electron mean-field
theory in the spirit of TD density-functional theory (DFT) [4, 5]. The derivation proceeds by
an exact rearrangement of the ab initio Lagrangian, followed by the introduction of an atomic
orbital basis set. This results in a system of one-particle TD Schrödinger equations (SE) for
the electrons, coupled self-consistently with Newtonian equations of motion for the nuclei,
with a TB structure. These equations conserve the norm of one-electron states, and the total
energy and momentum of the system of electrons and nuclei. The form of these equations
allows a range of TB models, from ab initio to empirical ones, to be discussed within a common
framework. The example of a single-orbital orthogonal TB model with second-order Coulomb
interactions is discussed in detail. In the limit of local charge neutrality, an earlier expression
for current-induced forces [2] is recovered.
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The most closely related work of which the author is aware is the TD TB scheme in ref-
erence [6] and the ab initio TD TB scheme in reference [7]. The dynamical equations in those
works differ from the ones found here. A particular difference is the appearance, in the present
paper, of terms in the Newtonian forces on nuclei that depend on the nuclear velocities. These
terms disappear identically in the case of a complete basis set. In the case of an incomplete
basis set, these terms are needed to conserve the total momentum of the system.

The next section describes the dynamical picture of an interacting system of quantum
electrons and classical nuclei, on which the paper is based. Section 3 introduces the TD mean-
field theory, from which the TD TB equations are to be derived. Section 4 expresses this
mean-field theory in a general basis set that depends parametrically on the nuclear positions.
In section 5, the TD TB equations are obtained as a special case of the previous section.
The formalism is extended to simplified empirical TB models. An orthogonal TB model
with second-order Coulomb interactions is discussed in section 6. The last section contains a
summary of the main results of the paper.

2. Lagrangian semiclassical dynamics

We consider a system ofNe quantum electrons andNz classical nuclei. A dynamical description
of such a system is afforded by the equations

E = 〈�e(t)|H|�e(t)〉 +
Nz∑
n=1

[Pn(t)]
2/2Mn + φ[{Rn(t)}] (1)

H|�e(t)〉 = ih̄|�̇e(t)〉 H =
Ne∑
i=1

p̂2
i /2me +

Nz∑
n=1

∫
ρ̂(r)vn[r − Rn(t)] dr + W({r̂i})

(2)

Ṙn(t) = Pn(t)/Mn (3)

Ṗn(t) = −
∫

ρ(r, t)∇nvn[r − Rn(t)] dr − ∇nφ ρ(r, t) = 〈�e(t)|ρ̂(r)|�e(t)〉. (4)

Here, E is the total energy of the system. |�e(t)〉 is a Ne-particle fermionic state-vector,
describing the electrons. Rn(t), Pn(t) andMn are the position, momentum and mass of nucleus
n, respectively. φ is the nucleus–nucleus interaction, W is the electron–electron interaction
and vn is the interaction potential between an electron and nucleus n. r̂i = (r̂ix, r̂iy, r̂iz)

and p̂i = (p̂ix, p̂iy, p̂iz) are electron position and momentum operators, respectively, with
[r̂iµ, p̂jν] = ih̄δij δµν . ρ̂(r) = ∑Ne

i=1 δ(r − r̂i ) is the electron number-density operator and
me is the electron mass. Throughout the paper, Ḟ = dF/dt and F̈ = d2F/dt2, for any
function of time F = F(t). Throughout the paper, ∇n = (∂/∂Rnx, ∂/∂Rny, ∂/∂Rnz) with
Rn = Rn(t) = (Rnx, Rny, Rnz). Everywhere, indices i and j refer to electrons and index n

refers to nuclei. From now on, the limits in summations over these indices will be omitted, on
the understanding that in such summations i and j run from 1 to Ne, and n runs from 1 to Nz.

Equation (4) may be deduced from equations (1), (2) and (3) under the assumption of
total-energy conservation [7]. Such a deduction contains an additional assumption that needs
to be shown explicitly for our purposes here. Let us assume equations (1), (2) and (3) and let
us allow the system to evolve through an infinitesimal time increment dt . We find

dE/dt =
∑
n

Ṙn(t) ·
(∫

ρ(r, t)∇nvn[r − Rn(t)] dr + Ṗn(t) + ∇nφ

)
. (5)

We now make the additional assumption that, at any time t , the acceleration of each nucleus,
Ṗn(t)/Mn, depends only on the instantaneous |�e(t)〉 and {Rn(t)}, and is independent of the
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nuclear velocities, {Ṙn(t)}. Then the expression in the large brackets above is independent
of {Ṙn(t)}. Hence, by imposing dE/dt = 0, we force this expression to vanish. This yields
equation (4). We will refer to this, and analogous Newtonian equations of motion, generically
as the Hellmann–Feynman (HF) theorem. The assumption that the nuclear accelerations are
independent of the nuclear velocities is plausible here. However, as will be shown in section 4,
this assumption need not hold in the case of an incomplete basis set.

Equations (1), (2), (3) and (4) may be derived from a fully quantum picture [7–10]. A
justification for these equations, starting from first principles, is given in appendix 1. These
equations may also be derived from the Lagrangian [9, 11, 12]

L = ih̄〈�e(t)|�̇e(t)〉 − 〈�e(t)|H|�e(t)〉 +
∑
n

Mn[Ṙn(t)]
2/2 − φ[{Rn(t)}]. (6)

To do this, we write |�e(t)〉 = ∑
α ψα(t)|α〉 and |�̇e(t)〉 = ∑

α ψ̇α(t)|α〉, where {|α〉} is an
arbitrary complete orthonormal time-independent many-electron basis. L becomes1

L = L[{ψα}, {ψ̇α}, {ψ∗
α}, {ψ̇∗

α}, {Rn}, {Ṙn})
= ih̄

∑
α

ψ∗
αψ̇α −

∑
α,α′

ψ∗
αHαα′ψα′ +

∑
n

MnṘ
2
n/2 − φ({Rn}) (7)

where ψα = ψα(t), Rn = Rn(t) and Hαα′ = 〈α|H|α′〉. We demand that the action
S = ∫ t1

t0
L dt is stationary under an arbitrary variation ψα(t) → ψα(t) + δψα(t), Rn(t) →

Rn(t) + δRn(t), with δψα(t0) = δψα(t1) = 0, δRn(t0) = δRn(t1) = 0. This yields the
Lagrangian equations of motion2

∂L/∂ψα − (d/dt)(∂L/∂ψ̇α) = 0 (8)

∂L/∂ψ∗
α − (d/dt)(∂L/∂ψ̇∗

α) = 0 (9)

∂L/∂Rn − (d/dt)(∂L/∂Ṙn) = 0. (10)

Throughout the paper, for any vector a = (ax, ay, az), ∂/∂a is used as alternative notation for
the gradient operator with respect to a, ∂/∂a = (∂/∂ax, ∂/∂ay, ∂/∂az). Equation (9) gives
the TD SE:

ih̄ψ̇α(t) =
∑
α′

Hαα′ψα′(t). (11)

This is equation (2) in matrix form. Equation (8) gives the complex conjugate of equation (11).
The TD SE conserves the norm of |�e(t)〉. Therefore, it is not necessary to impose norm-
conservation as an explicit constraint in the variational procedure above. Equation (10) gives

MnR̈n(t) = −
∑
α,α′

ψ∗
α(t)(∇nHαα′)ψα′(t)− ∇nφ

= −
∫

ρ(r, t)∇nvn[r − Rn(t)] dr − ∇nφ. (12)

The momentum conjugate to Rn(t) is given by

Pn(t) = ∂L/∂Ṙn = MnṘn(t). (13)

The total energy of the system is given by the Legendre transformation

E =
∑
α

ψ̇α(∂L/∂ψ̇α) +
∑
α

ψ̇∗
α(∂L/∂ψ̇

∗
α) +

∑
n

Ṙn · (∂L/∂Ṙn)− L (14)

=
∑
α,α′

ψ∗
α(t)Hαα′ψα′(t) +

∑
n

[Pn(t)]
2/2Mn + φ[{Rn(t)}]. (15)

1 In the present case ψ̇∗
α does not appear in L, but it is accommodated in the formalism for generality.

2 In this variational procedure, the real and imaginary parts of ψα must be treated as independent variables. This
is equivalent to treating ψα and ψ∗

α as independent variables [12], which yields the Euler–Lagrange equations in the
text.
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Equations (11), (12), (13) and (15) are the same as equations (2), (4), (3) and (1), respectively.
The Lagrangian approach will be used later to derive the TD TB equations. Three points
are now addressed in connection with the above equations of motion in order to specify the
underlying assumptions and scope of the paper.

The first point concerns the boundary conditions with which the equations of motion are to
be integrated. In semiclassical theories of collision processes, there are methods in which one
imposes requirements on the state-vector of the quantum subsystem both at some initial time
and at some final time, in order for instance to describe a particular excitation [13,14]. This is
not done here. Instead, here we imagine that the evolution of the system is to be determined
by a set of initial conditions, specifying the nuclear positions and velocities, and, up to an
arbitrary phase factor, the electron state-vector, at some initial time t0. Integration of equations
(2), (3) and (4) then produces unique values for {Rn(t)} and |�e(t)〉 for any t > t0.

The second point concerns the physical interpretation of the equations of motion. For
a given set of initial conditions, equations (2), (3) and (4) produce a unique set of classical
nuclear trajectories. The motion of the electrons, on the other hand, is governed by quantum
mechanics. Within the standard probabilistic interpretation of quantum mechanics, at any
time the electron state-vector |�e(t)〉 harbours a statistical distribution of possible outcomes
of a measurement on the electron subsystem [15]. This mixed deterministic–probabilistic
description, in which all of these possible outcomes are associated with a single set of classical
nuclear trajectories, may become an issue in situations in which one wishes to describe an
individual transition of the quantum subsystem [13, 16]. This issue will not be pursued here.
Instead, here we observe that, via |�e(t)〉, for a given set of initial conditions, equations (2),
(3) and (4) give an unambiguous result for the statistical distribution as a whole, and for the
expectation value in particular, of any quantum-mechanical electronic operator, at any time t .
Therefore, in cases where this statistical distribution, or expectation value, is in itself physically
meaningful, these equations produce a meaningful result. Two examples of such cases are the
instantaneous electron density, ρ(r, t) = 〈�e(t)|ρ̂(r)|�e(t)〉, and the electron current density,
j(r, t) = 〈�e(t)|ĵ(r)|�e(t)〉, where ĵ(r) is the electron current-density operator. Both of
these quantities are used in the theory of atoms, molecules and solids, with applications to
bonding, structure and transport. In this paper, we proceed on the understanding that if in a
given problem the above mixed deterministic–probabilistic description is a cause for concern,
then in that problem the use of the electron state-vector is to be restricted to the calculation of
statistical properties and expectation values.

The third point concerns the validity of the classical description of the nuclei [8]. The
argument in appendix 1 is valid in the limits of high nuclear masses or high nuclear energies,
where each nucleus can be localized sufficiently, both in real space and in momentum space [8].
For molecules and solids these requirements are very restrictive. A further limitation of
equations (2), (3) and (4)—that of the mixed deterministic–probabilistic description and
its applicability to individual excitations [7, 13, 16]—was mentioned above. The classical
description of nuclei is also restrictive physically. Examples of phenomena in which the
quantum nature of nuclei is apparent are tunnelling of light nuclei in solids, the behaviour of
the phonon heat capacity at low temperatures and zero-point motion. Nonetheless, the classical
description of nuclei is widely used in static and in dynamical calculations, in TB [17] and
in DFT [1]. The range of validity of the classical description of nuclei [8] is not a subject
of this paper. The question considered here is: if we assume this description, then what is
the appropriate form of the equations of motion in a one-electron mean-field picture, in an
approximate basis set?

Subject to the above provisos, equations (2), (3) and (4) define a dynamical description of
a system of electrons and nuclei. Within this description, electrons can be in a non-stationary
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state. The above equations then allow a dynamical exchange of momentum and energy between
electrons and nuclei [5, 7, 9]. An example of a dynamical process, that will be referred to in
the paper, is the evolution towards equilibrium of an initial non-equilibrium electron charge
distribution in a conductor.

3. Time-dependent mean-field theory

So far, the description of the electrons contained the full many-body electron–electron
interaction W in equation (2). We now replace the energy of this interaction, at any time
t , by a functional, Ehxc = Ehxc[ρ], of the instantaneous electron density ρ = ρ(r, t). We
will not consider spin-dependent interactions. The choice of Ehxc is a specification of the
model. Within the Hartree approximation, Ehxc would be given by the Hartree energy. In a
better approximation, Ehxc might be given by the Hartree energy plus the exchange–correlation
energy, calculated from ground-state DFT in the local density approximation [1, 5]. Here, we
treat Ehxc[ρ] as a general differentiable model functional. Next, we take the electrons to be
described by a set of one-particle states, satisfying a one-particle TD SE with an effective
potential V = ∑

n vn + vhxc, where vhxc = δEhxc/δρ. Justification for such a one-electron
description may be sought in TD DFT [1, 4, 5]. Alternatively, this description may be viewed
as an empirical TD mean-field theory.

The dynamical equations of the theory may be obtained from the Lagrangian [5]

L = ih̄
∑
i

〈ψi(t)|ψ̇i(t)〉 −
∑
i

〈ψi(t)|T̂ |ψi(t)〉 − E[ρ] +
∑
n

Mn[Ṙn(t)]
2/2 − φ[{Rn(t)}]

(16)

where

E[ρ] =
∑
n

∫
ρ(r, t)vn[r − Rn(t)] dr + Ehxc[ρ] (17)

ρ = ρ(r, t) =
∑
i

|ψi(r, t)|2. (18)

Here, {|ψi(t)〉} is a set of Ne normalizable one-particle states, one for each electron in
the system, and ψi(r, t) = 〈r|ψi(t)〉. T̂ = p̂2/2me is the one-electron kinetic energy
operator, where p̂ is the one-particle momentum operator. We recall the property 〈r|p̂|r′〉 =
−ih̄∇δ(r − r′). Throughout the paper, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) with r = (x, y, z).
Everywhere, 〈η|ζ 〉 = ∫ 〈η|r〉 dr 〈r|ζ 〉 for any two one-electron states |η〉 and |ζ 〉.

We follow the Lagrangian variational procedure in section 2. We write

|ψi(t)〉 =
∑
ζ

ψiζ (t)|ζ 〉 |ψ̇i(t)〉 =
∑
ζ

ψ̇iζ (t)|ζ 〉

where {|ζ 〉} is an arbitrary complete orthonormal time-independent one-electron basis. L

becomes

L = L({ψiζ }, {ψ̇iζ }, {ψ∗
iζ }, {ψ̇∗

iζ }, {Rn}, {Ṙn})
= ih̄

∑
i,ζ

ψ∗
iζ ψ̇iζ −

∑
i,ζ,ζ ′

ψ∗
iζ Tζζ ′ψiζ ′ − E[ρ] +

∑
n

MnṘ
2
n/2 − φ({Rn}) (19)

where ψiζ = ψiζ (t), Rn = Rn(t), Tζζ ′ = 〈ζ |T̂ |ζ ′〉 and

ρ = ρ(r, t) =
∑
i,ζ,ζ ′

ψ∗
iζ (t)〈ζ |r〉〈r|ζ ′〉ψiζ ′(t).
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A stationary-action requirement now gives equations (8), (9) and (10), with ψα and ψ∗
α

replaced by ψiζ and ψ∗
iζ , respectively. Equation (9) yields the one-electron TD SE

ih̄ψ̇iζ (t) =
∑
ζ ′

Hζζ ′ψiζ ′(t) (20)

where

Hζζ ′ = 〈ζ |Ĥ |ζ ′〉 Ĥ = T̂ + V̂ V̂ =
∫

|r〉V (r, t)〈r| dr (21)

V (r, t) = δE[ρ]/δρ =
∑
n

vn[r − Rn(t)] + vhxc(r, t) vhxc(r, t) = δEhxc[ρ]/δρ. (22)

Equation (8) gives the complex conjugate of equation (20). In evaluating equations (8) and
(9), we have used the relation

∂E/∂ψ∗
iζ =

∫
(δE/δρ)(∂ρ/∂ψ∗

iζ ) dr

=
∑
ζ ′

∫
〈ζ |r〉V (r, t)〈r|ζ ′〉ψiζ ′(t) dr =

∑
ζ ′

〈ζ |V̂ |ζ ′〉ψiζ ′(t) = (∂E/∂ψiζ )
∗.

(23)

Equation (20) may also be written in operator form as ih̄|ψ̇i(t)〉 = Ĥ |ψi(t)〉. Equation (10)
gives the HF theorem

MnR̈n(t) = −
∫

ρ(r, t)∇nvn[r − Rn(t)] dr − ∇nφ. (24)

For the energy of the system, a Legendre transformation as in equation (14) gives

E =
∑
i

〈ψi(t)|T̂ |ψi〉 + E[ρ] +
∑
n

Mn[Ṙn(t)]
2/2 + φ[{Rn(t)}]. (25)

These equations satisfy the following conservation laws [5]. The TD SE conserves the
inner product 〈ψi(t)|ψj(t)〉. Hence, it is not necessary to impose orthonormality as an explicit
constraint in the Lagrangian variational procedure. Since L has no explicit time dependence,
E is a constant of the motion [18]. It may be verified explicitly from equations (20), (24)
and (25) that Ė = 0. Finally, the total momentum of the electrons and nuclei is conserved.
Indeed, let

Pe(t) =
∑
i

〈ψi(t)|p̂|ψi(t)〉. (26)

Then

Ṗe(t) = (1/ih̄)
∑
i

〈ψi(t)|[p̂, Ĥ ]|ψi(t)〉

= (1/ih̄)
∑
i

〈ψi(t)|[p̂, V̂ ]|ψi(t)〉 =
∫

V (r, t)∇ρ(r, t) dr. (27)

But E[ρ] = ∑
n

∫
ρ(r, t)vn[r − Rn(t)] dr + Ehxc[ρ] is invariant under the transformation

ρ(r, t) → ρ(r − ∆, t), {Rn(t)} → {Rn(t) + ∆}, for any ∆. Hence,

−
∫
(∇ρ)(δE/δρ) dr +

∑
n

∫
ρ(r, t)∇nvn[r − Rn(t)] dr

= −
∫

V (r, t)∇ρ(r, t) dr +
∑
n

∫
ρ(r, t)∇nvn[r − Rn(t)] dr = 0. (28)

Furthermore, φ[{Rn(t)}] is invariant under rigid translations of the nuclei as a whole, and
hence

∑
n ∇nφ = 0. It follows that

Ṗe(t) +
∑
n

MnR̈n(t) = 0. (29)
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4. Mean-field theory in a parametric basis set

The TD mean-field theory of the previous section is now to be expressed in a general
basis {|β〉}, where each basis state, |β〉 = |β[{Rn(t)}]〉, depends parametrically on the
nuclear positions {Rn(t)}. The basis {|β〉} may be complete or incomplete. In general,
it may contain a discrete and a continuum part. The basis states may be non-orthogonal.
The only requirement that we impose is that, for any ∆, β[r, {Rn(t)}] = 〈r|β〉 satisfies
β[r, {Rn(t) + ∆}] = β[r − ∆, {Rn(t)}], or

∇β[r, {Rn(t)}] +
∑
n

∇nβ[r, {Rn(t)}] = 0. (30)

We now write

|ψi(t)〉 =
∑
β

ψiβ(t)|β〉 (31)

|ψ̇i(t)〉 =
∑
β

[ψ̇iβ(t)|β〉 + ψiβ(t)|β̇〉] (32)

where

|β̇〉 =
∑
n

|∇nβ〉 · Ṙn(t). (33)

Here, |∇nβ〉 is defined by 〈r|∇nβ〉 = ∇n〈r|β〉. The electron density in equation (18) is now
given by

ρ = ρ(r, t) =
∑
i,β,β ′

ψ∗
iβ(t)〈β|r〉〈r|β ′〉ψiβ ′(t)

=
∑
i,β,β ′

ψ∗
iβ(t)β

∗[r, {Rn(t)}]β ′[r, {Rn(t)}]ψiβ ′(t). (34)

Equation (31) is more than just an expansion. If {|β〉} is incomplete, then by writing
this equation we impose a constraint on the electron states {|ψi(t)〉}. This constraint is that
these states now lie in that subspace of the original Hilbert space, which is spanned by the basis
{|β〉}. Since the basis states {|β〉} depend on the nuclear positions, this subspace will in general
vary with time. A classical analogue of this constraint would be to restrict the trajectories of
the electrons in a way that is itself tied up with the motion of the nuclei. For example, the
electrons might be constrained to slide frictionlessly along a set of massless wires, with the
wires themselves attached to the moving nuclei.

4.1. Lagrangian equations of motion

Equations (31) and (32) are substituted into the Lagrangian from equation (16). This gives

L = L({ψiβ}, {ψ̇iβ}, {ψ∗
iβ}, {ψ̇∗

iβ}, {Rn}, {Ṙn})
= ih̄

∑
i,β,β ′

ψ∗
iβ〈β|β̇ ′〉ψiβ ′ + ih̄

∑
i,β,β ′

ψ∗
iβ〈β|β ′〉ψ̇iβ ′ −

∑
i,β,β ′

ψ∗
iβTββ ′ψiβ ′ − E[ρ]

+
∑
n

MnṘ
2
n/2 − φ({Rn}) (35)

where ψiβ = ψiβ(t), Rn = Rn(t), Tββ ′ = 〈β|T̂ |β ′〉 and ρ is given by equation (34).
The Lagrangian equations of motion are now given by equations (8), (9) and (10), with

ψα and ψ∗
α replaced by ψiβ and ψ∗

iβ , respectively. Equation (9) yields the TD SE

ih̄
∑
β ′

〈β|β̇ ′〉ψiβ ′(t) + ih̄
∑
β ′

〈β|β ′〉ψ̇iβ ′(t) =
∑
β ′

Hββ ′ψiβ ′(t) (36)
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where Hββ ′ = 〈β|Ĥ |β ′〉. Here, once again, Ĥ = T̂ + V̂ , V̂ = ∫ |r〉V (r, t)〈r| dr and
V (r, t) = δE[ρ]/δρ, with ρ now given by equation (34). In deriving equation (36) we have
used the analogue, in the present case, of equation (23). Equation (8) gives the complex
conjugate of equation (36).

To evaluate equation (10) we should note that now L depends on the nuclear velocities
both via the nuclear kinetic energy term and via the quantity

〈β|β̇ ′〉 =
∑
n

〈β|∇nβ
′〉 · Ṙn(t). (37)

We must remember also that 〈β|β ′〉, 〈β|β̇ ′〉, 〈β|∇nβ
′〉 and Tββ ′ all depend on {Rn(t)}, via the

dependence on {Rn(t)} of the basis states {|β〉}. Equation (10), together with (36), gives the
HF theorem

MnR̈n(t) = −∇nE − ∇nφ −
∑
i,β,β ′

ψ∗
iβ(t)(∇nTββ ′)ψiβ ′(t)

+
∑

i,β,β ′,β ′′,β ′′′
[ψ∗

iβ(t)〈∇nβ|β ′〉S−1
β ′β ′′Hβ ′′β ′′′ψiβ ′′′(t) + c.c.]

+ ih̄
∑
i,β,β ′

[ψ∗
iβ(t)〈∇nβ|β̇ ′〉ψiβ ′(t)− c.c.]

− ih̄
∑

i,β,β ′,β ′′,β ′′′
[ψ∗

iβ(t)〈∇nβ|β ′〉S−1
β ′β ′′ 〈β ′′|β̇ ′′′〉ψiβ ′′′(t)− c.c.] (38)

where ∇nE = (∂E/∂Rn){ψiβ },{ψ∗
iβ },{Rm�=n} and z ± c.c. = z ± z∗ for any complex number z.

Above we have introduced the Hermitian overlap matrix Sββ ′ = 〈β|β ′〉 and we have assumed
that it is invertible. E[ρ] depends on {Rn(t)} both via {vn[(r−Rn(t)]} and via {β[r, {Rn(t)}]}
in equation (34). Hence, in equation (38)

∇nE = (∂E/∂Rn){ψiβ },{ψ∗
iβ },{Rm�=n}

=
∫

ρ(r, t)∇nvn[r − Rn(t)] dr

+
∑
i,β,β ′

ψ∗
iβ(t)(〈∇nβ|V̂ |β ′〉 + 〈β|V̂ |∇nβ

′〉)ψiβ ′(t). (39)

The energy of the system is given by the Legendre transformation

E =
∑
i,β

ψ̇iβ(∂L/∂ψ̇iβ) +
∑
i,β

ψ̇∗
iβ(∂L/∂ψ̇

∗
iβ) +

∑
n

Ṙn · (∂L/∂Ṙn)− L

=
∑
i,β,β ′

ψ∗
iβ(t)Tββ ′ψiβ ′(t) + E[ρ] +

∑
n

Mn[Ṙn(t)]
2/2 + φ[{Rn(t)}]. (40)

All terms in equation (38) that involve derivatives of the basis states {|β〉} are Pulay-like
forces [19]. If the basis {|β〉} is complete, then these forces vanish identically. Indeed,
if {|β〉} is complete, then

∑
β,β ′ 〈r|β〉S−1

ββ ′ 〈β ′|r′〉 = δ(r − r′). Then the terms in the
fourth line of equation (38) exactly cancel those in the third line, while the second line
becomes

∑
i,β,β ′ ψ

∗
iβ(t)(〈∇nβ|Ĥ |β ′〉+〈β|Ĥ |∇nβ

′〉)ψiβ ′(t). Writing ∇nTββ ′ = 〈∇nβ|T̂ |β ′〉+

〈β|T̂ |∇nβ
′〉 and using equation (39), we recover equation (24).

4.2. Conserved quantities

The dynamical equations above conserve orthonormality, total energy and total momentum.
Conservation of the inner product 〈ψi(t)|ψj(t)〉 = ∑

β,β ′ ψ
∗
iβ(t)〈β|β ′〉ψjβ ′(t) follows from
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equation (36). Indeed,

(d/dt)
∑
β,β ′

ψ∗
iβ(t)〈β|β ′〉ψjβ ′(t)

=
∑
β,β ′

[ψ̇∗
iβ(t)〈β|β ′〉ψjβ ′(t)

+ ψ∗
iβ(t)〈β̇|β ′〉ψjβ ′(t) + ψ∗

iβ(t)〈β|β̇ ′〉ψjβ ′(t) + ψ∗
iβ(t)〈β|β ′〉ψ̇jβ ′(t)]

= (1/ih̄)
∑
β,β ′

[−ψ∗
iβ(t)Hββ ′ψjβ ′(t) + ψ∗

iβ(t)Hββ ′ψjβ ′(t)] = 0. (41)

Hence, once again, it is not necessary to impose orthonormality as a separate constraint in the
Lagrangian variational procedure. The terms in equation (36) involving time derivatives of the
basis states are crucial for the last line in equation (41), and are therefore needed to conserve
orthonormality.

Conservation of energy follows from the lack of explicit time dependence of L in
equation (35) [18]. It may be verified explicitly from equations (36), (38) and (40) that
Ė = 0.

Conservation of momentum also follows from an invariance property of L. For given
{ψiβ} and {ψ̇iβ}, L is invariant under the transformation {Rn} → {Rn + ∆}, for any ∆.
Hence,

∑
n ∂L/∂Rn = 0. Then equation (10), together with (30) and (37), implies that

(d/dt)
∑
i,β,β ′

ψ∗
iβ(t)〈β|p̂|β ′〉ψiβ ′(t) +

∑
n

MnR̈n(t) = 0. (42)

This is a statement of conservation of mechanical momentum, in the sense of equations (26)
and (29). Equation (42) can be verified explicitly from equations (36) and (38). This is done in
appendix 2. That derivation shows explicitly that if the basis {|β〉} is incomplete, then the terms
in equation (38), which involve time derivatives of the basis states, are needed for momentum
conservation.

4.3. Alternative approaches

A feature of the present approach is the appearance in equations (36) and (38) of terms that
depend on time derivatives of the basis states, and hence, via equation (33), on the instant-
aneous nuclear velocities. It was shown above that in general these terms are needed for
norm conservation, in the sense of equation (41), and for momentum conservation, in the
sense of equation (42). The present Lagrangian approach is now compared with other possible
approaches.

An alternative procedure would be to put Pn = MnṘn in equation (40), and to write
Ṗn = −∂E/∂Rn. Such a procedure would not be compatible with the present formalism.
The reason is that, for any generalized coordinate q, the Hamiltonian equation of motion
ṗq = −∂E/∂q applies to the canonical momentum pq = ∂L/∂q̇. In the present case,
and in general [18], the canonical momentum conjugate to Rn, ∂L/∂Ṙn, is distinct from
the mechanical momentum MnṘn. If E and L are linked by the Legendre transformation in
equation (40), and if the transformation from generalized coordinates (in this case {ψiβ}, {ψ∗

iβ},
{Rn}) and velocities (in this case {ψ̇iβ}, {ψ̇∗

iβ}, {Ṙn}) to generalized coordinates and conjugate
canonical momenta (in this case {∂L/∂ψ̇iβ}, {∂L/∂ψ̇∗

iβ}, {∂L/∂Ṙn}) is done consistently, then
the Hamiltonian formalism and the Lagrangian formalism are equivalent [20].

A Lagrangian approach is used in the TD TB formalism in reference [6]. In that paper,
a semiempirical Lagrangian is used that is different from L in equation (35). The resulting
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dynamical equations are different from the present ones. In particular, the dynamical equations
in reference [6] do not contain terms involving time derivatives of the basis states.

Another approach would be to deduce an equation of motion for the nuclei from the
requirement of total-energy conservation. In such an approach, one might start from equ-
ations (36) and (40), allow the system to evolve through an infinitesimal time interval dt , and
impose dE/dt = 0. Subject to the additional assumption, as outlined in section 2, that the
nuclear accelerations are independent of the nuclear velocities, one would then arrive at an
expression for MnR̈n(t), given by just the first two lines in equation (38). This is the force
expression found in reference [7]. It is easy to see why the velocity-dependent terms in the third
and fourth lines in equation (38) are not captured by an energy-conservation argument. Let us
take the scalar product of both sides of equation (38) with Ṙn(t), and sum over n. Then, in
view of equation (33), the contributions from the third and fourth lines in equation (38) vanish.
Thus, the velocity-dependent forces in equation (38) do not contribute to the rate of change,∑

n MnṘn(t) · R̈n(t), of the total nuclear kinetic energy. Stated differently, the total work
done by these velocity-dependent forces is zero. Within the present Lagrangian approach, the
assumption that the nuclear accelerations are independent of the nuclear velocities would not
be justified in the first place.

Caution is called for in pronouncing one of these approaches correct and another one
wrong. The use of an incomplete basis introduces an error. In reference [7], for example, this
error would manifest itself at the level of equation (42). Here, this error forces the appearance
of velocity-dependent Pulay-like forces. This error is like a bubble of air in a balloon filled
with liquid: you try to expel it from one place, and it pops up in another. The advantage of
the present first-principles Lagrangian approach is that it yields the above conservation laws
naturally, without a need to impose them as external conditions.

5. Time-dependent tight binding

TD TB results from an exact rearrangement of the quantity E in equation (17), combined with
a particular choice of basis, namely an atomic orbital basis. The resultant TB equations have a
useful form that allows a range of models—from ab initio to empirical ones, from the limit of
strong electron–electron repulsion to the limit of non-interacting electrons—to be discussed
within a common algebraic framework.

5.1. First-principles tight binding

Let us step back to section 3. We make the following modifications. For generality, the
bare nuclei are replaced by ions, although one may equally well adhere to the all-electron
description, considered so far. Now vn in equation (17) is the ionic pseudopotential of ion n.
φ in equation (16) is the ion–ion interaction potential. Mn, Rn(t) and Ṙn(t) now designate the
mass, position and velocity of ion n, respectively. The Ne electrons that appear explicitly in
the theory are now the valence electrons, described by a set of Ne one-particle states {|ψi(t)〉}.
The choice of Ehxc[ρ] in equation (17) is once again a specification of the theory.

Next, we imagine performing a self-consistent valence electron calculation for atom n

in isolation, placed at position Rn(t). In this calculation the atom may be neutral, or it may
be in some ionized state. Let this calculation produce a set of atomic orbitals {|φnγ 〉} with
occupation numbers {fnγ }. Index γ labels the various orbitals on atom n. The numbers {fnγ }
are constants. Let also

/̃ =
∑
i

|ψi(t)〉〈ψi(t)| ρ = ρ(r, t) = 〈r|/̃|r〉 (43)



Time-dependent tight binding 10135

/̃n =
∑
γ

|φnγ 〉fnγ 〈φnγ | ρn = ρn[r − Rn(t)] = 〈r|/̃n|r〉 (44)

/̃0 =
∑
n

/̃n ρ0 = ρ0[r, {Rn(t)}] = 〈r|/̃0|r〉 =
∑
n

ρn[r − Rn(t)]. (45)

Here, ρ is the instantaneous density of the valence electrons in the system, ρn is the valence
electron density of atom n in isolation and ρ0 is a rigid superposition of atomic valence electron
densities.

We now write the quantity E[ρ] in equation (17) as

E[ρ] = E[ρ0] +
∫

{ρ(r, t)− ρ0[r, {Rn(t)}]}V0(r, t) dr + ET B[ρ]

V0(r, t) = (δE/δρ)ρ=ρ0 .

(46)

V0 is the effective potential V in equation (22), evaluated at electron density ρ0. The density
functional ET B[ρ] is defined by equation (46). If ET B[ρ] has a convergent Taylor expansion,
then it may be approximated by a finite series in powers of1ρ(r, t) = ρ(r, t)−ρ0[r, {Rn(t)}]
as follows [21]:

ET B[ρ] ≈
M∑
k=2

(1/k!)
∫

1ρ(r1, t) · · ·1ρ(rk, t)Fk(r1, . . . , rk) dr1 · · · drk. (47)

Here, Fk(r1, . . . , rk) = (δkEhxc/δρ(r1, t) · · · δρ(rk, t))ρ=ρ0 , and M defines the order of the
approximation. M = 2 would correspond to the functionals used in references [22] and [23].

Using equation (46), we may write∑
i

〈ψi(t)|T̂ |ψi(t)〉 + E[ρ] = Tr[Ĥ 0(/̃− /̃0)] + ET B[ρ] + 1E + C (48)

where

Ĥ 0 = T̂ + V̂0 V̂0 =
∫

|r〉V0(r, t)〈r| dr (49)

C =
∑
n

(Tn + En) (50)

1E = E[ρ0] −
∑
n

En. (51)

Here, Tr[|ζ 〉〈ζ |Â] = 〈ζ |Â|ζ 〉 for any one-electron state |ζ 〉, for any operator Â. Tn =
Tr[T̂ /̃n] = ∑

γ fnγ 〈φnγ |T̂ |φnγ 〉 is the kinetic energy of the valence electrons in atom n

in isolation, and is a constant. En = ∫
ρn[r − Rn(t)]vn[r − Rn(t)] dr + Ehxc[ρn] is the

electrostatic and exchange–correlation energy of atom n in isolation, and is a constant. C

is a sum of electronic energies of free atoms, and is a constant. 1E = 1E[{Rn(t)}] is a
function only of the ionic positions. Equation (48) is exact, apart from a possible finite-order
approximation to ET B , as in equation (47). Equation (48) serves as the basis for TD TB.

We now move forward to section 4, and as the basis {|β〉} we select the set of atomic orbitals
{|φnγ 〉}. Since 〈r|φnγ 〉 = φnγ [r −Rn(t)] is a function only of [r −Rn(t)], equations (30) and
(33) become ∇φnγ [r − Rn(t)] + ∇nφnγ [r − Rn(t)] = 0 and |φ̇nγ 〉 = |∇nφnγ 〉 · Ṙn(t), with
|∇nφnγ 〉 defined by 〈r|∇nφnγ 〉 = ∇n〈r|φnγ 〉. Let us define

Qnγn′γ ′ = 〈φnγ |∇n′φn′γ ′ 〉 = −〈φnγ |∇φn′γ ′ 〉 = (1/ih̄)〈φnγ |p̂|φn′γ ′ 〉 (52)

where |∇φn′γ ′ 〉 is defined by 〈r|∇φn′γ ′ 〉 = ∇〈r|φn′γ ′ 〉. Let us introduce the Hermitian matrices

H 0
nγn′γ ′ = 〈φnγ |Ĥ 0|φn′γ ′ 〉 (53)

Snγn′γ ′ = 〈φnγ |φn′γ ′ 〉. (54)
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Following equations (31) and (32), we write

|ψi(t)〉 =
∑
n,γ

ψi
nγ (t)|φnγ 〉 (55)

|ψ̇i(t)〉 =
∑
n,γ

[ψ̇ i
nγ (t)|φnγ 〉 + ψi

nγ (t)|φ̇nγ 〉]. (56)

The valence electron density in equation (43) is given by

ρ = ρ(r, t) =
∑

i,n,γ,n′,γ ′
ψi∗
nγ (t)φ

∗
nγ [r − Rn(t)]φn′γ ′ [r − Rn′(t)]ψi

n′γ ′(t). (57)

Finally, let us define the Hermitian TB density matrices:

/n′γ ′nγ =
∑
i

ψi
n′γ ′(t)ψ

i∗
nγ (t) (58)

/0
n′γ ′nγ = δnn′δγ γ ′fnγ . (59)

The Lagrangian in equation (35) now becomes

LTB = LTB({ψi
nγ }, {ψ̇ i

nγ }, {ψi∗
nγ }, {ψ̇ i∗

nγ }, {Rn}, {Ṙn})
= ih̄

∑
n,γ,n′,γ ′

/n′γ ′nγQnγn′γ ′ · Ṙn′ + ih̄
∑

i,n,γ,n′,γ ′
ψi∗
nγ Snγn′γ ′ψ̇ i

n′γ ′

−
∑

n,γ,n′,γ ′
(/n′γ ′nγ −/0

n′γ ′nγ )H
0
nγn′γ ′ − ET B[ρ]

+
∑
n

MnṘ
2
n/2 − φTB({Rn})− C (60)

where ψi
nγ = ψi

nγ (t), Rn = Rn(t), ρ is given by equation (57) and

φTB({Rn}) = φ({Rn}) + 1E({Rn}). (61)

φTB is the total change in electrostatic and exchange–correlation energy as the free atoms are
brought together and rigidly superimposed from infinity [2,24]. φTB involves only properties
of free atoms, namely the density ρ0 in equations (45) and (51) and the original ion–ion
interaction potential φ. Therefore, φTB is an a priori function solely of the atomic species
and their positions. φTB can be approximated by a repulsive pair potential [2, 24]. Before
deriving the equations of motion from LTB , we now make an aside to extend the derivation to
TB models with empirical parameters.

5.2. Empirical tight binding

So far, it has been shown how the quantities appearing in the Lagrangian LTB in equation (60)
are to be obtained in a first-principles calculation. However, one may wish to make simplified
model assumptions about these quantities. It is therefore desirable to keep the dynamical TB
equations open to such empirical models. This is possible, because all derivations, starting
from equation (60), require only certain algebraic properties of the quantities Snγn′γ ′ , Qnγn′γ ′ ,
H 0
nγn′γ ′ , ET B , φTB and /0

n′γ ′nγ . These properties are the following.

(i) The matrix Snγn′γ ′ is Hermitian and invertible. For n �= n′, for given γ and γ ′, Snγn′γ ′

depends only on Rn − Rn′ , whence ∇nSnγn′γ ′ + ∇n′Snγn′γ ′ = 0. Snγnγ ′ is independent of
Rn.

(ii) Qnγn′γ ′ satisfies

Qnγn′γ ′ = ∇n′Snγn′γ ′ = −∇nSnγn′γ ′ = −∇nS
∗
n′γ ′nγ = −Q∗

n′γ ′nγ n �= n′ (62)

Qnγnγ ′ = −Q∗
nγ ′nγ . (63)

Qnγnγ ′ is independent of Rn.
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(iii) The matrix H 0
nγn′γ ′ is Hermitian. H 0

nγn′γ ′ is a function only of the ionic positions
{Rn}. H 0

nγn′γ ′ is invariant under rigid translations of the ions as a whole, whence∑
n′′ ∇n′′H 0

nγn′γ ′ = 0.

(iv) ET B = ET B({ψi
nγ }, {ψi∗

nγ }, {Rn}) is such that

∂ET B/∂ψi∗
nγ =

∑
n′,γ ′

V TB
nγn′γ ′ψ

i
n′γ ′ = (∂ET B/∂ψi

nγ )
∗ (64)

where V TB
nγn′γ ′ is Hermitian. For given {ψiβ}, ET B is invariant under the transformation

{Rn} → {Rn + ∆}, for any ∆. Hence, ∇nET B = (∂ET B/∂Rn){ψi
nγ },{ψi∗

nγ },{Rm�=n} satisfies∑
n ∇nET B = 0. If we are deriving our TB model from first principles, then, by analogy

with equation (23), V TB
nγn′γ ′ = 〈φnγ |V̂ T B |φn′γ ′ 〉, where V̂ T B = ∫ |r〉V TB(r, t)〈r| dr,

V TB(r, t) = δET B[ρ]/δρ, with ρ given by equation (57).
(v) φTB is a function only of the ionic positions {Rn}. φTB is invariant under rigid translations

of the ions as a whole, whence
∑

n ∇nφ
TB = 0.

(vi) {fnγ } in equation (59) are constants. C is an arbitrary constant.

The above properties are satisfied in the first-principles TB set-up in subsection 5.1. All
derivations from this point onward rely only on these properties. Therefore, all results below
apply not only to first-principles TB but also to any empirical TB model whose parameters
satisfy the above properties.

5.3. Lagrangian equations of motion

The Lagrangian equations of motion, corresponding to LTB in equation (60), are given by
equations (8), (9) and (10), with L replaced by LTB and with ψα and ψ∗

α replaced by ψi
nγ and

ψi∗
nγ , respectively. The evaluation of these equations requires only properties (i)–(vi) above.

Equation (9) yields the TD SE

ih̄
∑
n′,γ ′

Qnγn′γ ′ · Ṙn′(t)ψi
n′γ ′(t) + ih̄

∑
n′,γ ′

Snγn′γ ′ψ̇ i
n′γ ′(t) =

∑
n′,γ ′

HTB
nγn′γ ′ψ

i
n′γ ′(t) (65)

where

HTB
nγn′γ ′ = H 0

nγn′γ ′ + V TB
nγn′γ ′ . (66)

V TB
nγn′γ ′ is given by equation (64). Qnγn′γ ′ , Snγn′γ ′ andH 0

nγn′γ ′ depend on time via their depend-
ence on the ionic positions {Rn(t)}. V TB

nγn′γ ′ depends on time via its dependence on {Rn(t)}
and on {ψi

nγ (t)}. Equation (8) gives the complex conjugate of equation (65).
The third Lagrangian equation gives the HF theorem

MnR̈n(t) = −
∑

n′,γ ′,n′′,γ ′′
(/n′′γ ′′n′γ ′ −/0

n′′γ ′′n′γ ′)∇nH
0
n′γ ′n′′γ ′′ − ∇nET B − ∇nφ

TB

−
∑

γ,n′,γ ′,n′′,γ ′′,n′′′,γ ′′′
(Qnγn′γ ′S−1

n′γ ′n′′γ ′′H
TB
n′′γ ′′n′′′γ ′′′/n′′′γ ′′′nγ + c.c.)

− ih̄
∑
γ,n′,γ ′

[/n′γ ′nγ Ṙn′(t) · ∇n′Qnγn′γ ′ − c.c.]

+ ih̄
∑

γ,n′,γ ′,n′′,γ ′′,n′′′,γ ′′′
{Qnγn′γ ′S−1

n′γ ′n′′γ ′′[Qn′′γ ′′n′′′γ ′′′ · Ṙn′′′(t)]/n′′′γ ′′′nγ − c.c.}

(67)
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where ∇nET B = (∂ET B/∂Rn){ψi
nγ },{ψi∗

nγ },{Rm�=n}. The energy of the system is given by the
Legendre transformation

ETB =
∑
i,n,γ

ψ̇ i
nγ (∂L

TB/∂ψ̇i
nγ ) +

∑
i,n,γ

ψ̇ i∗
nγ (∂L

TB/∂ψ̇i∗
nγ ) +

∑
n

Ṙn · (∂LTB/∂Ṙn)− LTB

=
∑

n,γ,n′,γ ′
(/n′γ ′nγ −/0

n′γ ′nγ )H
0
nγn′γ ′ + ET B[{ψi

nγ (t)}, {ψi∗
nγ (t)}, {Rn(t)}]

+
∑
n

Mn[Ṙn(t)]
2/2 + φTB[{Rn(t)}] + C. (68)

Subject to a given set of initial conditions, specifying {ψi
nγ (t)}, {Rn(t)} and {Ṙn(t)} at some

time, equations (65) and (67) produce unique values for these variables at any later time.
Subject to the provisos in section 2, equations (65) and (67) define a dynamical description
of the system of electrons and ions. In this description, the electrons are not confined to an
instantaneous stationary state.

5.4. Conserved quantities

It may be verified explicitly that equation (65) conserves the inner product∑
n,γ,n′,γ ′ ψi∗

nγ (t)Snγn′γ ′ψ
j

n′γ ′(t). Hence, as before, it is not necessary to impose orthonormality
as a separate constraint in the Lagrangian variational procedure. Since LTB has no explicit
time dependence, ETB in equation (68) is a constant of the motion [18]. It may be verified
explicitly that equations (65) and (67) guarantee ĖT B = 0.

For given {ψi
nγ } and {ψ̇ i

nγ }, LTB is invariant under the transformation {Rn} → {Rn + ∆},
for any ∆. Hence,

∑
n ∂L

TB/∂Rn = 0. Then equation (10) implies that the quantity

P = ih̄
∑

n,γ,n′,γ ′
Qnγn′γ ′/n′γ ′nγ +

∑
n

MnṘn(t) (69)

is a constant of the motion. It may be verified explicitly that equations (65) and (67)
guarantee Ṗ = 0. In view of equation (52), in a first-principles TB scheme the quantity
ih̄

∑
n,γ,n′,γ ′ Qnγn′γ ′/n′γ ′nγ above may be identified as Pe(t) in equation (26). Then Ṗ = 0 is

a statement of momentum conservation, in the same sense as equation (42). In an empirical TB
model, Snγn′γ ′ and Qnγn′γ ′ are ‘user-defined’ parameters. In that case, the extent to which the
quantity ih̄

∑
n,γ,n′,γ ′ Qnγn′γ ′/n′γ ′nγ may be taken to represent Pe(t) depends on how physical

the assumed form of Snγn′γ ′ is. In all cases, however, P in equation (69) is a conserved quantity
in the theory.

5.5. Stationary states and self-consistency

The stationary states of a quantum system may be obtained as stationary points of the energy
of the system subject to the constraint of fixed state norm [25]. To find the stationary states of
our system of electrons for a given set of ionic positions {Rn}, we imagine that the ions are
frozen in these positions, and we consider the energy of the system, given by equation (68).
We replace the quantities {ψi

nγ (t)} and {ψi∗
nγ (t)} in ETB by a set of variables {cinγ } and {ci∗nγ },

respectively, and we seek stationary values of ETB with respect to3 {cinγ } and {ci∗nγ }, subject to

3 As in the Lagrangian variational procedure, the real and imaginary parts of cinγ must be treated as independent

variables. This is equivalent to treating cinγ and ci∗nγ as independent variables.



Time-dependent tight binding 10139

the constraint
∑

n,γ,n′,γ ′ ci∗nγ Snγn′γ ′cin′γ ′ = 1. This yields a set of Ne eigenvalue equations4

∑
n′,γ ′

HTB
nγn′γ ′c

i
n′γ ′ = εi

∑
n′,γ ′

Snγn′γ ′cin′γ ′ HTB
nγn′γ ′ = H 0

nγn′γ ′ + V TB
nγn′γ ′ . (70)

Here, V TB
nγn′γ ′ is given by equation (64), with {ψi

nγ } and {ψi∗
nγ } replaced by {cinγ } and {ci∗nγ },

respectively. We may wish to consider different sets of Ne one-particle states from the full
eigenspectrum of the matrix HTB to be used in the construction of ETB and ET B in this
procedure. This may be done by introducing a set of occupation numbers {fk}, such that∑

k fk = Ne and /n′γ ′nγ = ∑
k c

k
n′γ ′fkc

k∗
nγ , where index k runs over all eigenstates of the

matrix HTB . Different choices of {fk} represent various stationary states of the Ne-electron
system, for the given set of ionic positions. These states include the ground state and excited
states. The solutions to equation (70) for each choice of {fk} are self-consistent, in the sense
that they return the same V TB

nγn′γ ′ via equation (64) as that which appears equation (70).
Let us consider the difference between the TD electron wavefunctions {ψi

nγ (t)} in equ-
ation (65) and the stationary wavefunctions {cinγ } in equation (70). As stated above, at any time
t , {ψi

nγ (t)} are determined by the coupled dynamical equations of the system, equations (65)
and (67), subject to a given set of initial conditions, specifying {ψi

nγ (t)}, {Rn(t)} and {Ṙn(t)}
at some earlier time. Thus, {ψi

nγ (t)} depend on the evolution of the system, leading up to the
instantaneous ionic positions at time t .

By contrast, {cinγ } are determined solely by the given set of ionic positions {Rn} and by the
given set of occupation numbers {fk} used to construct the eigenvalue problem in equation (70).
We may, therefore, write

cinγ = cinγ ({Rn}, {fk}). (71)

The precise functional dependence of cinγ on {Rn} and {fk} is determined by the forms of
H 0
nγn′γ ′ = H 0

nγn′γ ′({Rn}), ET B = ET B({cinγ }, {ci∗nγ }, {Rn}) and Snγn′γ ′ = Snγn′γ ′(Rn − Rn′).

5.6. Born–Oppenheimer approximation

In our discussion of the dynamics of the system so far, we have not imposed requirements of
stationarity on the motion of the electrons or ions. As a limiting case, we now consider the
stationary limit, defined by two conditions. The first is that the ionic velocities are sufficiently
small to make the velocity-dependent terms in equation (67) negligible. The second is that
as the ions move, at any time t , the electron subsystem remains in a particular stationary
state, defined by equation (70) for the instantaneous ionic positions {Rn(t)}, for a given
fixed set of occupation numbers {fk}. These assumptions constitute the Born–Oppenheimer
approximation.

Thus, in the Born–Oppenheimer approximation, {ψi
nγ (t)} are no longer determined by

equation (65), but are given by

ψi
nγ (t) = cinγ [{Rn(t)}, {fk}] (72)

where {cinγ } are the respective self-consistent stationary wavefunctions, used in the construction
of ETB and ET B in the eigenvalue problem in equation (70), for the given set of occupation
numbers {fk}, for the set of instantaneous ionic positions {Rn(t)}. Ignoring the velocity-
dependent terms and using equations (62), (63), (70) and (72), we may now cast equation (67)

4 In the absence of degeneracies, the solutions are guaranteed to be orthogonal. If there are sets of degenerate
solutions, then orthogonality within each such set must be imposed as a separate constraint.
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as

MnR̈n(t) = −
∑

n′,γ ′,n′′,γ ′′
(/n′′γ ′′n′γ ′ −/0

n′′γ ′′n′γ ′)∇nH
0
n′γ ′n′′γ ′′ − ∇nET B − ∇nφ

TB

+
∑

n′,γ ′,n′′,γ ′′
/ε
n′′γ ′′n′γ ′ ∇nSn′γ ′n′′γ ′′ /ε

n′′γ ′′n′γ ′ =
∑
i

ψi
n′′γ ′′(t)εiψ

i∗
n′γ ′(t)

(73)

with ∇nET B = (∂ET B/∂Rn){ψi
nγ },{ψi∗

nγ },{Rm�=n}.
The Born–Oppenheimer approximation allows the above force expression to be derived

from an effective conservative potential as follows. In view of equations (71) and (72), for
a given set of occupation numbers {fk}, the electron wavefunctions {ψi

nγ (t)} in the Born–
Oppenheimer approximation are parametric functions of the ionic positions {Rn(t)}. Then the
quantity

φ̃ = φ̃[{Rn(t)}, {fk}] =
∑

n,γ,n′,γ ′
(/n′γ ′nγ −/0

n′γ ′nγ )H
0
nγn′γ ′

+ ET B[{ψi
nγ (t)}, {ψi∗

nγ (t)}, {Rn(t)}] + φTB[{Rn(t)}] (74)

is also a parametric function of {Rn(t)}, for the given {fk}. Under an infinitesimal variation in
{Rn(t)}, using equation (70) and the condition d

∑
n,γ,n′,γ ′ ψi∗

nγ (t)Snγn′γ ′ψi
n′γ ′(t) = 0, we find

dφ̃ = −
∑

n,γ,n′,γ ′
/ε
n′γ ′nγ dSnγn′γ ′ +

∑
n,γ,n′,γ ′

(/n′γ ′nγ −/0
n′γ ′nγ ) dH 0

nγn′γ ′

+
∑
n

(∇nET B) · dRn(t) + dφTB (75)

where ∇nET B = (∂ET B/∂Rn){ψi
nγ },{ψi∗

nγ },{Rm�=n}. Since both sides of equation (75) involve exact
differentials, we may deduce

∇nφ̃ =
∑

n′,γ ′,n′′,γ ′′
(/n′′γ ′′n′γ ′ −/0

n′′γ ′′n′γ ′)∇nH
0
n′γ ′n′′γ ′′

−
∑

n′,γ ′,n′′,γ ′′
/ε
n′′γ ′′n′γ ′ ∇nSn′γ ′n′′γ ′′ + ∇nET B + ∇nφ

TB (76)

with ∇nET B = (∂ET B/∂Rn){ψi
nγ },{ψi∗

nγ },{Rm�=n}. By conservation of energy, as the system of

electron and ions evolves, we must have ĖT B = ∑
n[∇nφ̃ + MnR̈n(t)] · Ṙn(t) = 0, where

φ̃ = φ̃[{Rn(t)}, {fk}]. Ignoring, by assumption, any dependence of the ionic accelerations on
the ionic velocities, we may now deduce

MnR̈n(t) = −∇nφ̃ φ̃ = φ̃[{Rn(t)}, {fk}]. (77)

This gives the force expression of equation (73) but derived from an effective potential. The
existence of this potential relies on the Born–Oppenheimer approximation, which enables us to
view the electron states, and hence the electronic energy of the system, as parametric functions
of the ionic positions. If one wishes to allow for variation in the occupation numbers {fk}, then
φ̃ must be replaced by an appropriate grand potential, as is done for instance in reference [2].

6. Single-orbital orthogonal tight binding

Insight into the dynamical TB equations may be obtained by considering a simplified empirical
TB model. This model is obtained by associating a single spherically symmetric orbital with
each ionic site, ignoring the overlap of orbitals on different sites, and assuming a simple
form for ET B with second-order Coulomb-like interactions. This model may be viewed as a
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TD generalization of the charge-neutral TB bond model in references [2, 26] with an explicit
inclusion of second-order interaction terms. It may also be viewed as a TD monopole version
of the multipole self-consistent TB model in reference [22]. Single-orbital orthogonal TB has
been shown to give a good description of the elastic properties of the noble metals [26]. In the
limit of local charge neutrality, it has been used in time-independent simulations of mechanical
structure, steady-state electrical conduction and current-induced forces in small wires [2, 3].

6.1. Parameters of the model

A single type of atomic orbital is present in the model. The overlap matrix, Snn′ = δnn′ , is
diagonal. /0

nn′ = δnn′/0
nn where the constant /0

nn is a parameter of the model [2, 26]. Every
simplification in H 0

nn′ is made. H 0
nn is treated as a constant, independent of the ionic positions.

For n �= n′, the hopping integral H 0
nn′ = H 0

n′n is a function only of the distance between ions
n and n′, and is a parameter of the model [2, 26]. φTB is approximated by a repulsive pair
potential [2, 24, 26]. For ET B = ET B({ψi

n}, {ψi∗
n }, {Rn}) we take the model expression

ET B = (1/2)
∑
n

Un 1q
2
n + (1/2)

∑
n

∑
n′ �=n

fnn′ 1qn 1qn′ 1qn = /nn −/0
nn. (78)

1qn can be interpreted as the excess number of electrons at site n. Un is a constant, independent
of the ionic positions. The quantity fnn′ = fn′n is a function only of the distance between ions
n and n′. Un and fnn′ are parameters of the model [22]. ET B represents a set of second-order
Coulomb-like interactions. V TB

nn′ in equation (64) is diagonal and is given by

V TB
nn′ = δnn′

(
Un 1qn +

∑
n′′ �=n

fnn′′ 1qn′′

)
. (79)

In this model, variations in the on-site energy HTB
nn = H 0

nn + V TB
nn arise solely from the inter-

action energy ET B , via V TB
nn . The quantity ∇nET B , appearing in equation (67), is given by

∇nET B = (∂ET B/∂Rn){ψi
n},{ψi∗

n },{Rm�=n} =
∑
n′ �=n

1qn 1qn′ ∇nfnn′ . (80)

Since Snn′ is diagonal, Qnn′ in equation (62) vanishes. Physically, the only sensible choice
for the diagonal elements of the matrix Q is Qnn = 0. Then Qnn′ = 0, ∀n, n′, and so the first
term in the right-hand side of equation (69) vanishes, although, as is shown below, Ṗ = 0 still
holds. This is an example of a situation in which the interpretation of that term as the total
momentum of the electrons is problematic. Electrons can flow and carry a current even in
orthogonal TB models [2], and one would expect them to carry momentum too. The problem
arises because of a physical inconsistency in the model: we have assumed some spatial overlap
of the atomic orbitals in allowing non-zero hopping integrals, thus enabling the electrons to
move, but we have denied this overlap in the overlap matrix. Finding an alternative definition
of electron momentum in orthogonal TB is an interesting problem. A possible line of thought
in that problem might start from considering the electron crystal momentum in translationally
invariant systems [27]. However, this issue will not be pursued here.

6.2. Equations of motion

The TB TD SE, equation (65), becomes

ih̄ψ̇ i
n(t) =

∑
n′

HTB
nn′ ψ

i
n′(t) HTB

nn′ = H 0
nn′ + V TB

nn′ (81)
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with V TB
nn′ given by equation (79). Equation (67) for the Newtonian force on ion n now reads

MnR̈n(t) = −2
∑
n′ �=n

Re[/n′n] ∇nH
0
nn′ − ∇nET B − ∇nφ

TB (82)

with ∇nET B = (∂ET B/∂Rn){ψi
n},{ψi∗

n },{Rm�=n} given by equation (80). With the imposition of
orthogonality, all velocity-dependent terms have disappeared from these equations. MnR̈n(t) is
now a sum of pairwise bond forces. Hence

∑
n MnR̈n(t) = 0, ensuring that P in equation (69)

is a constant of the motion. The total energy of the system is given by

ETB =
∑
n,n′

(/n′n −/0
n′n)H

0
nn′ + ET B[{ψi

n(t)}, {ψi∗
n (t)}, {Rn(t)}]

+ φTB[{Rn(t)}] +
∑
n

Mn[Ṙn(t)]
2/2 + C. (83)

6.3. Self-consistency and Born–Oppenheimer approximation

The results of subsections 5.5 and 5.6 now take the following form. Equation (70) now reads∑
n′

HTB
nn′ c

i
n′ = εic

i
n HTB

nn′ = H 0
nn′ + V TB

nn′ . (84)

Here, V TB
nn′ is given by equation (79), with 1qn = /nn − /0

nn = (
∑

k fk|ckn|2) − /0
nn, where,

once again, index k runs over all eigenstates of the matrix HTB . In the Born–Oppenheimer
approximation, following equation (72), we write ψi

n(t) = cin[{Rn(t)}, {fk}]. This enables us
to define the effective interionic potential

φ̃ = φ̃[{Rn(t)}, {fk}]
=

∑
n,n′

(/nn′ −/0
nn′)H

0
n′n + ET B[{ψi

n(t)}, {ψi∗
n (t)}, {Rn(t)}] + φTB[{Rn(t)}] + C.

(85)

The Newtonian forces on the ions may now be expressed as

MnR̈n(t) = −∇nφ̃ = −2
∑
n′ �=n

Re[/n′n] ∇nH
0
nn′ − ∇nET B − ∇nφ

TB (86)

with ∇nET B = (∂ET B/∂Rn){ψi
n},{ψi∗

n },{Rm�=n} given by equation (80).

6.4. Local charge neutrality

Let us consider the limit of strong electron–electron repulsion, where {Un} and {fnn′ } become
very large. This limit corresponds to making the capacitance of the system very small. In
this limit, the system cannot tolerate the accumulation of excess charges. Hence, either in a
time-dependent or in a time-independent situation, in this limit the system will behave in such
a way as to keep {1qn} in equation (78) close to zero5. We will refer to this limit as the limit
of local charge neutrality (LCN).

Physically, in this limit the on-site energy shifts {V TB
nn } in equation (79) should remain

finite. Looked at from a numerical point of view, 1qn → 0 must in general be achievable with

5 One may ask, can we not take as the initial state in a time-dependent calculation a situation in which we have
transferred electrons from one end of the system to the other, thereby making the initial values of {1qn} non-zero
by construction? If we did make {1qn} finite initially, then in the limit of vanishing capacitance we would generate
divergent on-site energy shifts {V TB

nn }. If, one the other hand, as the initial state we wish to take a situation in which
the system has been biased to a finite potential difference between the ends, then, from the start, {1qn} will have to
be vanishingly small.
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finite {V TB
nn }. But if {V TB

nn }, linear in {Un}, {fnn′ } and linear in {1qn}, remain finite, then the
quantities ET B in equation (78) and ∇nET B in equation (80), which are linear in {Un}, {fnn′ }
and quadratic in {1qn}, must tend to zero.

Let now /LCN
nn′ designate the instantaneous TB density matrix /nn′ in a general TD

problem, solved with some very large {Un} and {fnn′ }. Since, as argued above, throughout the
evolution of the system ∇nET B → 0, equation (82) becomes

MnR̈n(t) = −2
∑
n′ �=n

Re[/LCN
n′n ] ∇nH

0
nn′ − ∇nφ

TB. (87)

Within a spin degeneracy factor of 2, which may be introduced at will by working with Ne/2
doubly populated states and multiplying the (Ne/2)-state density matrix by 2 [2], equation (87)
is the same as the force expression in the presence of electrical current flow, obtained in the
charge-neutral TB bond model of reference [2]. In that paper, this expression was derived from
a steady-state statistical analysis. Here, this force expression is obtained from a dynamical
formalism, without assumptions of stationarity.

Since in the LCN limit (1qnV TB
nn ) → 0, and since V TB

nn′ is diagonal, we may write
(/LCN

nn′ − /0
nn′)H

0
n′n = (/LCN

nn′ − /0
nn′)H

TB
n′n , ∀n, n′. Since also ET B → 0, equation (83) for

the energy of the system now can be written as

ELCN =
∑
n,n′

(/LCN
nn′ −/0

nn′)H
TB
n′n + φTB[{Rn(t)}] +

∑
n

Mn[Ṙn(t)]
2/2 + C. (88)

This is the energy expression in the charge-neutral TB bond model of references [2, 26].
Let us finally consider stationary states and the Born–Oppenheimer approximation in

the LCN limit. In looking for self-consistent stationary states, we would be solving equ-
ation (84) with some very large {Un} and {fnn′ }. Physically, we know that the solution will
have 1qn → 0, ∀n. We may then anticipate this result, and, as the condition for self-
consistency, take the requirement that {cin} satisfy equation (84), with {V TB

nn } adjusted such
that 1qn = (

∑
k fk|ckn|2)−/0

nn = 0, ∀n. It may be verified that ELCN , with {ψi
n(t)} replaced

by {cin}, is then stationary under norm-conserving variations in {cin}. The effective interionic
potential in the Born–Oppenheimer approximation, with ψi

n(t) = cin[{Rn(t)}, {fk}], becomes

φ̃LCN = φ̃LCN [{Rn(t)}, {fk}] =
∑
n,n′

(/LCN
nn′ −/0

nn′)H
TB
n′n + φTB[{Rn(t)}] + C (89)

giving the stationary HF theorem

MnR̈n(t) = −∇nφ̃
LCN = −2

∑
n′ �=n

Re[/LCN
n′n ] ∇nH

0
nn′ − ∇nφ

TB. (90)

7. Summary

The central results of this paper are equations (65) and (67). Subject to the provisos stated in
section 2, these equations give a dynamical TB description of the evolution of an interacting
system of quantum electrons and classical ions in non-stationary situations. These equations
were shown to conserve norm, energy and momentum. The Lagrangian approach yields
these dynamical equations and conservation laws naturally, in a single internally consistent
calculation. The usefulness of equation (48) is that the resultant formalism spans a range of
TB models within a common framework. These models range from ab initio models, with
parameters derived from first principles as outlined in subsection 5.1, to empirical TB models,
such as the single-orbital orthogonal model in section 6. These models, furthermore, span the
range from the LCN limit of strong electron–electron repulsions to the limit of non-interacting
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electrons. The latter limit is obtained by setting V0(r, t) = ∑
n vn[r − Rn(t)], ET B = 0 and

1E[{Rn(t)}] = ∑
n

∑
n′ �=n

∫
ρn[r − Rn(t)]vn′ [r − Rn′(t)] dr in equation (48).

Stationary methods have been developed, using both TB [2] and DFT [19, 28], to
model electrical conduction and current-induced forces in small conductors under steady-state
conditions. The present formalism corroborates the steady-state TB expression for current-
induced forces derived in reference [2], and generalizes it beyond the LCN limit. It also
opens up the possibility of using TB to model dynamical transport processes, such as the
discharge of two initially charged nanoscale metallic clusters, connected by an atomic wire.
The TD TB equations of motion allow ions to interact dynamically with the current-carrying
electrons in such processes. These equations, furthermore, allow Coulomb interactions and
self-consistency to be included explicitly in the calculation, via the quantity ET B .
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Appendix 1

Equations (1), (2), (3) and (4) are derived below, starting from a fully quantum picture. This
derivation is similar in spirit to the wave-packet analysis discussed in reference [8]. We start
fromNe quantum electrons andNz quantum nuclei without any approximations or constraints.
We allow the nuclei to be different from each other. This system is described by the Hamiltonian

Hfull = He + Hez + Hz (A1.1)

where

He =
Ne∑
i=1

p̂2
i /2me + W({r̂i}) (A1.2)

Hez =
Nz∑
n=1

∫
ρ̂(r)vn(r − R̂n) dr ρ̂(r) =

Ne∑
i=1

δ(r − r̂i ) (A1.3)

Hz =
Nz∑
n=1

P̂ 2
n /2Mn + φ({R̂n}). (A1.4)

Here, r̂i = (r̂ix, r̂iy, r̂iz) and p̂i = (p̂ix, p̂iy, p̂iz) are electron position and momentum
operators, respectively, and R̂n = (R̂nx, R̂ny, R̂nz) and P̂n = (P̂nx, P̂ny, P̂nz) are the position
and momentum operators, respectively, for nucleus n. They satisfy the commutation relations
[r̂iµ, p̂jν] = ih̄δij δµν and [R̂mµ, P̂nν] = ih̄δmnδµν , with all other commutators equal to zero.
As in section 2, φ is the nucleus–nucleus interaction, W is the electron–electron interaction,
vn is the interaction potential between an electron and nucleus n and ρ̂(r) = ∑Ne

i=1 δ(r − r̂i )

is the electron number-density operator.
The system of electrons and nuclei is described by a many-body state-vector |�(t)〉

satisfying the TD SE

Hfull|�(t)〉 = ih̄|�̇(t)〉. (A1.5)

|�〉 may be assumed to be properly normalized and antisymmetric under exchange of electron
labels. Since the nuclei are all different, there are no particular symmetry requirements on
|�(t)〉 under exchange of nuclear labels.
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Let 〈Â〉 stand for 〈�(t)|Â|�(t)〉, for any operator Â. Let

Rn(t) = 〈R̂n〉 (A1.6)

Pn(t) = 〈P̂n〉. (A1.7)

Rn(t) and Pn(t) satisfy

Ṙn(t) = (d/dt)〈R̂n〉 = (1/ih̄)〈[R̂n,Hfull]〉 = 〈P̂n〉/Mn = Pn(t)/Mn (A1.8)

Ṗn(t) = (d/dt)〈P̂n〉 = (1/ih̄)〈[P̂n,Hfull]〉 = −
∫

〈ρ̂(r) ∇̂nvn(r − R̂n)〉 dr − 〈∇̂nφ({R̂m})〉
(A1.9)

where ∇̂n represents the symbolic derivative ∂/∂R̂n.
The nuclear motion can now be taken to the classical limit as follows. We imagine that

|�(t)〉 is prepared such as to make the spread of each nuclear position

1Rn =
√

〈R̂2
n〉 − 〈R̂n〉2

sufficiently small to enable us to write

〈f ({r̂i}, {R̂n})〉 ≈ 〈f ({r̂i}, {〈R̂n〉})〉 = 〈f [{r̂i}, {Rn(t)}]〉 (A1.10)

for any given function of the electron and nuclear position operators. Next, we observe that,
for a given typical nuclear kinetic energy T , by making each nucleus sufficiently massive, we
can make Pn = |〈P̂n〉| ∼ √

2MnT as large as we please. Hence, for a given1Rn, we can make
the relative spread in the nuclear momentum, 1Pn/Pn ∼ h̄/(Pn 1Rn) as small as is necessary
to enable us to write

〈f ({P̂n})〉 ≈ f ({〈P̂n〉}) = f [{Pn(t)}] (A1.11)

for any given function of the nuclear momentum operators. Equation (A1.9) now becomes

Ṗn(t) = −
∫

ρ(r, t)∇nvn[r − Rn(t)] dr − ∇nφ[{Rm(t)}] ρ(r, t) = 〈ρ̂(r)〉. (A1.12)

Equations (A1.8) and (A1.12) are the classical equations of motion of nucleus n.
Next, we determine the effective TD SE for the quantum electrons. We assume that, at

some initial time t0, |�(t)〉 may be written as

|�0〉 = |�(t0)〉 = |�e0〉|�z0〉. (A1.13)

Here, |�e0〉 is an arbitrary normalized antisymmetric many-electron state. |�e0〉 can be thought
of as some linear combination of Ne-electron Slater determinants. |�z0〉 is an arbitrary
normalized many-nucleus state, without any symmetry requirements, but with the require-
ment that it is such as to satisfy equations (A1.10) and (A1.11). If f = f ({R̂n}, {P̂n})
and g = g({r̂i}, {p̂i}) are an arbitrary nuclear operator and an arbitrary electronic operator,
respectively, then |�0〉 has the property

〈�0|f |�0〉 = 〈�z0|f |�z0〉 (A1.14)

〈�0|g|�0〉 = 〈�e0|g|�e0〉. (A1.15)

Consider now some later time t > t0, such that equations (A1.10) and (A1.11) remain valid
throughout the interval from t0 to t . Let us divide this interval into N → ∞ time steps
δt = (t − t0)/N . Let ts = t0 + s δt and let |�s〉 = |�(ts)〉, with s = 0, 1, . . . , N . In this
notation, tN = t and |�N 〉 = |�(t)〉.
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Let us consider the expectation value of an arbitrary electronic operator, g = g({r̂i}, {p̂i}),
in |�(t)〉. We write

〈�(t)|g|�(t)〉 = 〈�N |g|�N 〉 ≈ 〈�N−1|g + (δt/ih̄)[g,Hfull]|�N−1〉 (A1.16)

= 〈�N−1|g + (δt/ih̄)[g,He + Hez]|�N−1〉 (A1.17)

= 〈�N−1|g + (δt/ih̄)[g,He + H̃ez(tN−1)]|�N−1〉 (A1.18)

where we have defined

H̃ez(τ ) =
Nz∑
n=1

∫
ρ̂(r)vn[r − Rn(τ )] dr. (A1.19)

For equation (A1.16), we have used equation (A1.5). For equation (A1.17), we have used the
fact the all electron position and momentum operators commute with all nuclear position and
momentum operators. For equation (A1.18), we have used equation (A1.10).

The operator inside the expectation value in equation (A1.18) is a new electronic operator.
DefininggN = g andgN−1 = gN+(δt/ih̄)[gN,He+H̃ez(tN−1)], we may write equation (A1.18)
as 〈�N |gN |�N 〉 = 〈�N−1|gN−1|�N−1〉. Iterating the process backwards, we arrive at

〈�(t)|g|�(t)〉 = 〈�N |gN |�N 〉 = 〈�0|g0|�0〉 = 〈�e0|g0|�e0〉 (A1.20)

where the electronic operator g0 is obtained from gN = g by repeated application of the
recurrence relation

gs−1 = gs + (δt/ih̄)[gs,He + H̃ez(ts−1)]. (A1.21)

For the last step in equation (A1.20), we have used equation (A1.15).
Consider now the many-electron state |�e(t)〉, satisfying the TD SE

H|�e(t)〉 = ih̄|�̇e(t)〉 H = He + H̃ez(t) (A1.22)

with the initial condition |�e(t0)〉 = |�e0〉. By repeating the above steps, it may be verified
that

〈�e(t)|g|�e(t)〉 = 〈�e0|g0|�e0〉 = 〈�(t)|g|�(t)〉. (A1.23)

Hence, as far as the expectation value of any electronic property is concerned, equation (A1.22)
is equivalent to the full SE, equation (A1.5). In equation (A1.12) we may now use ρ(r, t) =
〈�e(t)|ρ̂(r)|�e(t)〉. Using equations (A1.10), (A1.11) and (A1.23), we may write the total
energy of the system, E = 〈�(t)|Hfull|�(t)〉, as

E = 〈�e(t)|H|�e(t)〉 +
Nz∑
n=1

[Pn(t)]
2/2Mn + φ[{Rn(t)}] (A1.24)

Equations (A1.8), (A1.12), (A1.22) and (A1.24) are the same as equations (3), (4), (2) and (1),
respectively.

Equations (A1.10) and (A1.11) require a � 1Rn � h̄/
√

2MnT , where a is a typical
atomic radius and T is a typical nuclear kinetic energy. For a heavy species like Au at room
temperature this condition is reasonably satisfied by 1Rn ∼ 10−11 m. 1Rn increases with
time roughly as 1Rn(t) = 1Rn(0)

√
1 + (t/τ )2, where τ = 2Mn1R

2
n(0)/h̄ [11]. Hence, in

the present case, the nuclear positions will retain their initial spread for a characteristic time
of τ ∼ 10−12 s, or a few thermal vibration periods.
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Appendix 2

Below, equation (42) is derived explicitly from equations (36) and (38). Let

Pe(t) =
∑
i

〈ψi(t)|p̂|ψi(t)〉 =
∑
i,β,β ′

ψ∗
iβ(t)〈β|p̂|β ′〉ψiβ ′(t).

Then

Ṗe(t) = (d/dt)
∑
i,β,β ′

ψ∗
iβ(t)〈β|p̂|β ′〉ψiβ ′(t)

=
∑
i,β,β ′

[ψ∗
iβ(t)〈β|p̂|β ′〉ψ̇iβ ′(t) + c.c.] +

∑
i,β,β ′

[ψ∗
iβ(t)〈β|p̂|β̇ ′〉ψiβ ′(t) + c.c.]

= ih̄
∑
i,β,β ′

[ψ∗
iβ(t)〈∇β|β ′〉ψ̇iβ ′(t)− c.c.] + ih̄

∑
i,β,β ′

[ψ∗
iβ(t)〈∇β|β̇ ′〉ψiβ ′(t)− c.c.]

(A2.1)

where |∇β〉 is defined by 〈r|∇β〉 = ∇〈r|β〉. Invoking equation (36) now gives

Ṗe(t) =
∑

i,β,β ′,β ′′,β ′′′
[ψ∗

iβ(t)〈∇β|β ′〉S−1
β ′β ′′Hβ ′′β ′′′ψiβ ′′′(t) + c.c.]

− ih̄
∑

i,β,β ′,β ′′,β ′′′
[ψ∗

iβ(t)〈∇β|β ′〉S−1
β ′β ′′ 〈β ′′|β̇ ′′′〉ψiβ ′′′(t)− c.c.]

+ ih̄
∑
i,β,β ′

[ψ∗
iβ(t)〈∇β|β̇ ′〉ψiβ ′(t)− c.c.]. (A2.2)

Let us now consider the quantity
∑

n MnR̈n(t), with MnR̈n(t) given by equation (38).
The quantities φ, Tββ ′ and—for given {ψiβ(t)}—E are invariant under the transformation
{Rn(t)} → {Rn(t)+∆}, for any ∆. Hence,

∑
n ∇nφ = 0,

∑
n ∇nTββ ′ = 0 and

∑
n ∇nE = 0.

Furthermore, from equation (30), |∇β〉 = − ∑
n |∇nβ〉. Hence,

∑
n MnR̈n(t) = −Ṗe(t).

This is equation (42). If the basis {|β〉} is complete, then
∑

β,β ′ 〈r|β〉S−1
ββ ′ 〈β ′|r′〉 = δ(r − r′),

and terms involving time derivatives of the basis states cancel out both within equation (38)
and within equation (A2.2). If the basis is incomplete, then the velocity-dependent terms in
the third and fourth lines in equation (38) are needed for equation (42).
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